Standard errors in covariance structure models: asymptotics versus bootstrap.
نویسندگان
چکیده
Commonly used formulae for standard error (SE) estimates in covariance structure analysis are derived under the assumption of a correctly specified model. In practice, a model is at best only an approximation to the real world. It is important to know whether the estimates of SEs as provided by standard software are consistent when a model is misspecified, and to understand why if not. Bootstrap procedures provide nonparametric estimates of SEs that automatically account for distribution violation. It is also necessary to know whether bootstrap estimates of SEs are consistent. This paper studies the relationship between the bootstrap estimates of SEs and those based on asymptotics. Examples are used to illustrate various versions of asymptotic variance-covariance matrices and their validity. Conditions for the consistency of the bootstrap estimates of SEs are identified and discussed. Numerical examples are provided to illustrate the relationship of different estimates of SEs and covariance matrices.
منابع مشابه
A Class of Population Covariance Matrices in the Bootstrap Approach to Covariance Structure Analysis.
Model evaluation in covariance structure analysis is critical before the results can be trusted. Due to finite sample sizes and unknown distributions of real data, existing conclusions regarding a particular statistic may not be applicable in practice. The bootstrap procedure automatically takes care of the unknown distribution and, for a given sample size, also provides more accurate results t...
متن کاملAsymptotics and Bootstrap for Random-Effects Panel Data Transformation Models∗
This paper investigates the asymptotic properties of quasi-maximum likelihood (QML) estimators for random-effects panel data transformation models where both the response and (some of) the covariates are subject to transformations for inducing normality, flexible functional form, homoskedasticity, and simple model structure. We develop a QML-type procedure for model estimation and inference. We...
متن کاملMaximum Likelihood and the Bootstrap for Nonlinear Dynamic Models
The bootstrap is an increasingly popular method for performing statistical inference. This paper provides the theoretical foundation for using the bootstrap as a valid tool of inference for quasimaximum likelihood estimators (QMLE). We provide a unified framework for analyzing bootstrapped extremum estimators of nonlinear dynamic models for heterogeneous dependent stochastic processes. We apply...
متن کاملAsymptotics for the Simex Estimator in Structural Measurement Error Models
Cook & Stefanski (1994) describe a computer intensive method, the SIMEX method, for approximately consistent estimation in regression problems with additive measurement error. In this paper, we derive the asymptotic distribution of their estimators and show how to compute estimated standard errors. These standard error estimators can either be used alone or as prepivoting devices in a bootstrap...
متن کاملBootstrapping factor models with cross sectional dependence
We consider bootstrap methods for factor-augmented regressions with cross sectional dependence among idiosyncratic errors. This is important to capture the bias of the OLS estimator derived recently by Gonçalves and Perron (2014). We first show that a common approach of resampling cross sectional vectors over time is invalid in this context because it induces a zero bias. We then propose the cr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The British journal of mathematical and statistical psychology
دوره 59 Pt 2 شماره
صفحات -
تاریخ انتشار 2006